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1. Introduction

This paper deals with the numerical approximation of incompressible viscous flows with variable density. This type of
flows are governed by the time-dependent Navier–Stokes equations:
qt þr � ðquÞ ¼ 0;
qðut þ u � ruÞ þ rp� lDu ¼ f;
r � u ¼ 0;

8><
>: ð1:1Þ
where the dependent variables are the density q > 0, the velocity field u, and the pressure p. The constant l is the dynamic
viscosity coefficient and f is a driving external force. In stratified flows we typically have f = qg, where g is the gravity field.
The fluid occupies a bounded domain X in Rd (with d = 2 or 3) and a solution to the above problem is sought over a time
interval [0,T]. The Navier–Stokes system is supplemented by the following initial and boundary conditions for u and q:
qðx;0Þ ¼ q0ðxÞ; qðx; tÞjC� ¼ aðx; tÞ;
uðx;0Þ ¼ u0ðxÞ; uðx; tÞjC ¼ bðx; tÞ;

�
ð1:2Þ
. All rights reserved.
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where C = @X and C� is the inflow boundary, which is defined by C� = {x 2 C:u(x) � n < 0}, with n being the outward unit
normal vector. Throughout this paper we assume that the boundary C is impermeable, i.e., u � n = 0 everywhere on C,
and C� = ;.

The mathematical theory of existence and uniqueness for (1.1) and (1.2) is quite involved and we refer to Lions [22] for
further details. The difficulty comes from the fact that these equations entangle hyperbolic, parabolic, and elliptic features.
Approximating (1.1) and (1.2) efficiently is a challenging task. A testimony of the difficulty is that, so far, very few papers
have been dedicated to the mathematical analysis of the approximation of (1.1) and (1.2). We refer to Liu and Walkington
[23] for one of the few attempts in this direction.

Approximating (1.1) and (1.2) can be done by solving the coupled system (1.1), but this approach is computer intensive
due to the elliptic character induced by incompressibility. Alternative, more efficient, approaches advocated in the literature
consist of using fractional time-stepping and exploiting, as far as possible, techniques already established for the solution of
constant density incompressible fluid flows. The starting point of most fractional time-stepping algorithms consists of
decoupling the incompressibility constraint and diffusion in the spirit of Chorin’s [5] and Temam’s [28] projection method.
Several algorithms have been developed which extend this idea to the situation that concerns us here, see for example
[2,1,18,24]. To the best of our knowledge, Guermond and Quartapelle [18] gave the first stability proof of a projection meth-
od for variable density flows. The algorithm proposed in [18] is somewhat expensive since it is composed of two time-con-
suming projections. An alternative algorithm composed of only one projection per time step was proposed in [24] and
proved to be stable. It seems that so far [18,24] are the only papers where projection methods for variable density flows have
been proved to be stable, the best available results being that of Pyo and Shen [24].

The common feature of all the projection-like methods referred to above is that at each time step, say tn+1, the pressure or
some related scalar quantity, say U, is determined by solving an equation of the following form:
�r � 1
qnþ1rU
� �

¼ W; @nUjC ¼ 0; ð1:3Þ
where qn+1 is an approximation of the density at time tn+1 and W is some right-hand side that varies at each time step. The
problem (1.3) is far more complicated to solve than just a Poisson equation. It is time consuming since it requires assembling
and pre-conditioning a variable-coefficient stiffness matrix at each time step. Note also that, it is necessary to have a uniform
lower bound on the value of the density for (1.3) to be solvable. This condition is a key to the method that we propose and it
seems that it has not been given enough attention in the literature.

The objective of the present work is to introduce a fractional time-stepping method for solving variable density flows that
involves solving only one Poisson problem per time step instead of problems like (1.3). The proposed algorithm is proved to
be stable and numerically illustrated.

The paper is organized as follows: in Section 2 we introduce the non-incremental version of our method and prove its
stability. The incremental version of the method is introduced in Section 3. First-order Euler time stepping is used in Sections
2 and 3. The most accurate version of the method using second-order Backward Second Difference (BDF2) is presented in
Section 4. Finally, Section 5 contains some numerical experiments that demonstrate the performance of the method.

2. Non-incremental projection method

To introduce the main characteristics of the method, we first focus our attention on its simplest form, which, using the
terminology from Guermond et al. [13], we henceforth refer to as the non-incremental version. More elaborate versions of
this method are introduced in the subsequent sections.

2.1. The heuristic argument

Let us start by reviewing the usual non-incremental Chorin/Temam algorithm for constant density [5,28,25,26]. We par-
tition the time interval [0,T] into N subintervals, which for the sake of simplicity we take uniform. We then introduce the
time step Dt = T/N and the discrete times tn = nDt, for n 2 {0, . . . ,N}. For the time being, let us neglect the nonlinear terms
to simplify the argumentation. Then the non-incremental Chorin/Temam algorithm for solving the constant density time-
dependent Stokes equations consists of computing two sequences of approximate velocities f~unþ1gn¼0;...;N; funþ1gn¼0;...;N ,
and one sequence of approximate pressure {pn+1}n=0,. . .,N as follows: First, set u0 = u0, then for all time steps tn+1, n P 0, solve
q
Dt
ð~unþ1 � unÞ � lD~unþ1 ¼ fnþ1

; ~unþ1jC ¼ 0; ð2:1Þ
and
1
Dt
ðunþ1 � ~unþ1Þ þ 1

q
rpnþ1 ¼ 0; r � unþ1 ¼ 0; unþ1 � njC ¼ 0; ð2:2Þ
where we have set fn+1: = f(tn+1). One key observation is that the second sub-step can be interpreted as a projection. Indeed,
this sub-step can be recast as follows:
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unþ1 þ Dt
q
rpnþ1 ¼ ~unþ1; r � unþ1 ¼ 0; unþ1 � njC ¼ 0; ð2:3Þ
which is the Helmholtz decomposition of ~unþ1 into a solenoidal part with zero normal trace plus a gradient. Upon introduc-
ing the Hilbert space
H ¼ fv 2 L2ðXÞ : r � v ¼ 0; v � njC ¼ 0g; ð2:4Þ
the above decomposition can be equivalently rewritten unþ1 ¼ PH ~unþ1, where PH is the L2-projection onto H. This fact is the
reason this method together with its many avatars is often referred to as a projection algorithm. One very interesting feature
of (2.1) and (2.2) is that the pressure is computed by solving the following Poisson problem:
Dpnþ1 ¼ q
Dt
r � ~unþ1; @npnþ1jC ¼ 0: ð2:5Þ
The algorithm (2.1) and (2.2) is simple and can be proved to converge. Higher-order generalizations can be constructed
and there exist convergence proofs up to second-order in time for the L2-norm of the velocity for some of these algorithms,
see e.g. [30,27,11,4,19]. A comprehensive review on these methods is done in Guermond et al. [13].

It is important to note at this point that to infer (2.5) from (2.2) we used the fact that the density is constant. When the
density is not constant, most of the attempts at splitting the pressure and the velocity that we are aware of so far are based
on strategies that are similar to that described above. The main idea always consists of projecting a non-solenoidal provi-
sional velocity onto H; in other words, most of the currently known splitting algorithms consist of solving problems similar
to (2.2). When taking the divergence of the left-most equation in (2.2) one is then reduced to solve a problem like the
following:
�r � 1
qnþ1rU
� �

¼ W; @nUjC ¼ 0; ð2:6Þ
where qn+1 is an approximation of the non constant function q(tn+1). It seems that all the algorithms that are more or less
based on the Helmholtz decomposition (2.3) always lead to problems like (2.6), which are hard to solve efficiently due to
the 1/qn+1 variable coefficient. The key conceptual leap proposed in the present paper consists of abandoning the projection
point of view in favor of a penalty-like argument.

As emphasized in Guermond [10] and Guermond and Quartapelle [16], the projected velocity un+1 can be eliminated from
(2.1) and (2.2). More precisely, the two sub-steps in (2.1) and (2.2) can be equivalently recast as follows:
q
Dt
ð~unþ1 � ~unÞ � lD~unþ1 þrpn ¼ fnþ1

; ~unþ1jC ¼ 0; ð2:7Þ
and
Dpnþ1 ¼ q
Dt
r � ~unþ1; @npnþ1jC ¼ 0: ð2:8Þ
Once un+1 is eliminated, it is clear that the Chorin/Temam algorithm is a discrete version of the following perturbation of the
Navier–Stokes equations:
qðut þ u � ruÞ þ rp� lDu ¼ f; ujC ¼ 0;
r � u� �

q Dp ¼ 0; @npjC ¼ 0;

(
ð2:9Þ
where � :¼ Dt. Actually, this perturbation is nothing more than a penalty on the divergence of the velocity as recognized in
Rannacher [25], since the momentum equation can also be recast into
qðut þ u � ruÞ þ q��1rD�1r � u� lDu ¼ f; ð2:10Þ
where D�1 is the inverse of the Laplace operator equipped with homogeneous Neumann boundary conditions. That is, given
W 2 L2(X), we denote by U = D�1W 2 H1(X) the function that has zero mean value and solves
hrU;rri ¼ hW; ri; 8r 2 H1ðXÞ; ð2:11Þ
where h�, �i denotes the scalar product in L2(X). No notational distinction is made between scalar products in L2(X) and L2(X).
The major claim of the present paper is that adopting the penalty point of view stated in (2.9) yields efficient splitting

algorithms whether the density is constant or not. This point of view is somewhat orthogonal to the current mainstream
in the literature which mainly focuses on the projection point of view.

Remark 2.1. Note that (2.10) is significantly different from standard penalty techniques using ���1rr � u as penalty term,
which are generally ill-conditioned. These techniques penalize the divergence in L2 whereas the term ��1rD�1r � u penalize
it in a weak norm somewhat related to that of H�1 :¼ ðH1

0Þ
0.
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2.2. The non-incremental scheme

For the reader who is familiar with penalty techniques, it is clear that provided � is small enough the divergence of the
velocity field solving (2.10) is small and q��1D�1r � u is an approximation of the pressure. We are now going to construct an
algorithm based on these two observations.

First we construct a penalty coefficient that is dimensionally correct. For this purpose we define
qmin
0 :¼min

x2X
q0ðxÞ:
Henceforth we assume that qmin
0 > 0, i.e., there is no vacuum. Second, we choose a number v in the interval ð0;qmin

0 �, i.e.,
v 2 ð0;qmin
0 �: ð2:12Þ
In the computations reported at the end of the paper we take v ¼ qmin
0 . By setting �: = Dt/v, we have defined a penalty coef-

ficient with the correct dimension.
We now define the approximate sequences {qn}n=0,. . .,N, {un}n=0,. . .,N, and {pn}n=0,. . .,N as follows: Set q0 = q0, u0 = u0, p0 = 0,

and for all time index n ranging 0 to N �1 solve:
qnþ1 � qn

Dt
þr � ðqnþ1unÞ � qnþ1

2
r � un ¼ 0; ð2:13Þ

qn unþ1 � un

Dt
þ qnþ1ðun � rÞunþ1 � lDunþ1 þ qnþ1

4
ðr � unÞunþ1 þrpn ¼ fnþ1

; unþ1jC ¼ 0; ð2:14Þ

Dpnþ1 ¼ v
Dt
r � unþ1; @npnþ1jC ¼ 0; ð2:15Þ
The density equation (2.13) is obtained using a first-order semi-implicit discretization of the mass conservation equation
in (1.1). The additional term qnþ1

2 r � un is consistent since it is zero if r � un = 0, and its meaning will become clear when we
do the stability analysis.

The velocity equation (2.14) is obtained by approximating the momentum equation in (1.1) using a first-order semi-im-
plicit discretization similar to that for the density. The additional term is also consistent and it is added to obtain uncondi-
tional stability. When the density is constant, the above algorithm (without the transport term) is the same as (2.7) and (2.8)
where, to simplify the notation, we have dropped the tilde from ~un and ~unþ1, since this is the only velocity family that we will
be using from now on.

The pressure equation (2.15) is a penalty equation in the spirit of (2.9).

Remark 2.2. Note that (2.15) is a standard Poisson equation, i.e., the above algorithm does not contain any second-order PDE
with non-constant coefficients like (2.6). This is the main novelty of the present paper.
2.3. Stability analysis of the non-incremental scheme

To avoid irrelevant technicalities, we assume that there is no external driving force, i.e., f = 0. We henceforth denote by k�k
the L2-norm. No notational distinction is made between the norm in L2(X) and L2(X).

We start with the L2-stability of the density.

Proposition 2.1. For any Dt > 0 and any sequence of velocities {un}n=0,. . .,N in L1(X) with bounded divergence and satisfying
un � njC = 0, the solution to (2.13) satisfies:
kqNk2 þ
XN�1

k¼0

kqkþ1 � qkk2 ¼ kq0k
2
:

Proof. Let us multiply (2.13) by 2Dtqn+1 and integrate over X. Using the identity 2a � (a � b) = a2 � b2 + (a � b)2 we obtain
kqnþ1k2 � kqnk2 þ kqnþ1 � qnk2 þ 2Dt
Z

X
r � qnþ1un

� �
qnþ1 � Dt

Z
X
ðqnþ1Þ2r � un ¼ 0:
Taking into account the boundary condition on un and integrating by parts, we infer
2
Z

X
r � ðqnþ1unÞqnþ1 �

Z
X
ðqnþ1Þ2r � un ¼ �2

Z
X
qnþ1un � rqnþ1 �

Z
X
ðqnþ1Þ2r � un

¼ �
Z

X
un � r½ðqnþ1Þ2� �

Z
X
ðqnþ1Þ2r � un ¼ �

Z
X
r � ½ðqnþ1Þ2un� ¼ 0:
Adding up the equality
kqnþ1k2 � kqnk2 þ kqnþ1 � qnk2 ¼ 0;
from n = 0 to n = N � 1, we obtain the desired result. h
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Remark 2.3. Note that the above stability result for the density does not depend on the incompressibility constraint, i.e., the
field un does not need to be solenoidal. This is important, since the approximate velocity solving (2.14) is not solenoidal. The
unconditional stability is due to the extra term qnþ1

2 r � un. The origin of this term can be traced back to Temam [29].

Having established the stability of (2.13), we prove stability of the algorithm (2.14) and (2.15) under the assumption of
the existence of a uniform lower bound on the density. More precisely we make the following technical assumption: The
sequence {qn}n=0,. . .,N satisfies the following:
fqngn¼0;...;N is uniformly bounded in L1ðXÞ; ð2:16Þ
8n ¼ 0; . . . ;N; v 6 qnðxÞ; a:e: in X: ð2:17Þ
Theorem 2.1. Assume that (2.16) and (2.17) hold. Then, for any Dt > 0 the solution to (2.14) and (2.15) satisfies the following
inequality:
XN

k¼1

krkukk2 þ 2lDt
XN

k¼1

krukk2 þ ðDtÞ2

v
XN

k¼1

krpkk2 þ
XN�1

k¼0

krpkk2

" #
6 kr0u0k2

;

where rn :¼ ffiffiffiffiffiffi
qn
p

.

Proof. We first multiply the momentum equation (2.14) by 2Dtun+1, integrate by parts, and use the identity
2a � (a � b) = a2 � b2 + (a � b)2. We obtain
krnunþ1k2 � krnunk2 þ krnðunþ1 � unÞk2 þ 2lDtkrunþ1k2 þ Dt
Z

X
qnþ1un � rjunþ1j2

þ Dt
2

Z
X
qnþ1ðr � unÞjunþ1j2 þ 2Dthrpn;unþ1i ¼ 0: ð2:18Þ
Next, we multiply the density equation (2.13) by Dtjun+1j2 and integrate by parts. We obtain
krnþ1unþ1k2 � krnunþ1k2 � Dt
Z

X
qnþ1un � rjunþ1j2 � Dt

2

Z
X
qnþ1ðr � unÞjunþ1j2 ¼ 0: ð2:19Þ
Adding up Eqs. (2.18) and (2.19) we obtain
krnþ1unþ1k2 � krnunk2 þ krnðunþ1 � unÞk2 þ 2lDtkrunþ1k2 þ 2Dthrpn;unþ1i ¼ 0: ð2:20Þ
Taking Eq. (2.15) at time steps n + 1 and n and subtracting one from the other, and using Cauchy–Schwarz inequality and
Hypothesis (2.17), we infer that
ðDtÞ2krðpnþ1 � pnÞk2
6 v2kunþ1 � unk2

6 krnðunþ1 � unÞk2
: ð2:21Þ
Multiplying (2.15) by 2(Dt)2pn and integrating over X we derive
2Dthunþ1;rpni ¼ 2v�1ðDtÞ2hrpnþ1;rpni ¼ v�1ðDtÞ2½krpnþ1k2 þ krpnk2 � krðpnþ1 � pnÞk2�; ð2:22Þ
Adding (2.20) and (2.21), and using (2.22) we obtain
krnþ1unþ1k2 � krnunk2 þ 2lDtkrunþ1k2 þ v�1ðDtÞ2½krpnþ1k2 þ krpnk2� 6 0:
which when we add up over n = 0, . . . ,N � 1 gives the desired stability result. h

Remark 2.4. Hypothesis (2.17) is rarely explicitly mentioned in numerical papers based on algorithms using (1.3), see e.g.
[1,2,18,24], but it is required to guarantee well-posedness. It seems that this condition is often overlooked. We do not want
to discuss in details how (2.17) can be achieved and proved, since this issue is non-trivial and goes far beyond the scope of
the present paper. Suffices to say that this can be achieved for instance by using so-called monotone schemes. We refer for
instance to Walkington [32] for a scheme using a discontinuous Galerkin technique. The numerical examples presented at
the end of this paper have been computed using a shock-capturing technique for which we observed that (2.17) is always
satisfied. The details of this shock-capturing technique are reported in [14,15].

Remark 2.5. Theorem 2.1 is a conditional result since we have not established that (2.13) guarantees (2.17), i.e., v 6 qn for
all n = 0, . . . ,N. We introduce in the next section an algorithm that decouples even further the mass conservation and the
momentum conservation so that the impact of the discretization of the mass conservation is minimized and reduced to
ascertaining (2.17).

Remark 2.6. The quantity 1
2 krnunk2 is the kinetic energy of the flow. Hence it is more natural to establish bounds in terms of

this quantity than on the velocity itself; see also Lions [22].
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3. Incremental projection method

It is now well established that the non-incremental pressure correction method is low-order accurate. More precisely, the
error is OðDtÞ for the velocity in the L2-norm and O Dt

1
2

� 	
for the velocity in the H1-norm and the pressure in the L2-norm; see

e.g. [25,26,17]. We now introduce an incremental version of the method to overcome this accuracy deficiency. We use the
same notation as in the previous section and, under the same assumptions on the density, we prove that this method is
stable.

3.1. The heuristic argument

Chorin/Temam’s constant density algorithm can be improved by making the pressure explicit in the viscous step and by
correcting it in the projection step. This technique is usually referred to as the incremental pressure-correction algorithm.
This algorithm consists of computing two sequences of approximate velocities f~unþ1gn¼0;...;N ; funþ1gn¼0;...;N , and one sequence
of approximate pressure {pn+1}n=0,. . .,N as follows: First, set u0 = u0, p0 = p(0), compute an approximation of u1: = u(Dt), then
for all time steps tn+1, n > 0, solve
q
Dt
ð~unþ1 � unÞ � lD~unþ1 þrpn ¼ fnþ1

; ~unþ1jC ¼ 0; ð3:1Þ
and
1
Dt
ðunþ1 � ~unþ1Þ þ 1

q
r/nþ1 ¼ 0; r � unþ1 ¼ 0; unþ1 � njC ¼ 0; ð3:2Þ

pnþ1 ¼ pn þ /nþ1: ð3:3Þ
We refer the reader to Shen [26] and Guermond and Quartapelle [16] for the analysis of the scheme (3.1), (3.2) and (3.3).
By proceeding as in Section 2.1, the so-called projected velocity (i.e., the solenoidal one) can be algebraically eliminated and
once this is done and difference quotients are replaced by time derivatives and the remaining Dt’s are replaced by �, the
above algorithm reduces to the following perturbation of the Navier–Stokes equations:
qðut þ u � ruÞ þ rp� lDu ¼ f; ujC ¼ 0;
r � u� �

q D/ ¼ 0; @n/jC ¼ 0;

�pt ¼ /:

8><
>: ð3:4Þ
Formally (3.4) is a Oð�2Þ perturbation of the constant density incompressible Navier–Stokes equations. By proceeding
again as in Section 2.1 we are now going to use (3.4) as the starting point for a new algorithm for variable density flows.

First set q0 = q0, u0 = u0, and /0 = 0. Let p0 be the pressure at t = 0 and set p0 = p0. This quantity can be deduced from q0 and
u0. For instance if the flow is at rest at t = 0, then p0 = 0. We define v as in (2.12). Then, given {(qn,un,pn,/n)}n=0,. . .,N�1 we
advance in time in the following way: The density is updated using the same relation as before
qnþ1 � qn

Dt
þr � ðqnþ1unÞ � qnþ1

2
r � un ¼ 0: ð3:5Þ
The velocity is now updated using
1
Dt

1
2
ðqnþ1 þ qnÞunþ1 � qnun


 �
þ qnþ1un � runþ1 þ 1

2
r � ðqnþ1unÞunþ1 � lDunþ1 þrðpn þ /nÞ ¼ fnþ1

; unþ1jC ¼ 0:

ð3:6Þ
The variable / is updated using
D/nþ1 ¼ v
Dt
r � unþ1; @n/

nþ1jC ¼ 0; ð3:7Þ
and, finally, the pressure is updated by
pnþ1 ¼ pn þ /nþ1: ð3:8Þ
Remark 3.1. The pressure term in the momentum equation (3.6) is a second-order extrapolation of the pressure at time tn+1,
since using (3.8) at time step n we have
pn þ /n ¼ 2pn � pn�1:
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Remark 3.2. The term 1
Dt

1
2 ðqnþ1 þ qnÞunþ1 � qnun
� 

þ 1
2r � ðqnþ1unÞunþ1 is asymptotically consistent with the equation.

Notice that if the involved functions are sufficiently smooth
1
2 ðqnþ1 þ qnÞunþ1 � qnun

Dt
þ 1

2
r � ðqnþ1unÞunþ1 ¼ ðq

nþ1 � qnÞ
2Dt

unþ1 þ qn ðunþ1 � unÞ
Dt

þ 1
2
r � ðqnþ1unÞunþ1

¼ 1
2
ðqt þr � ðquÞÞnþ1unþ1 þ ðqutÞnþ1 þ OðDtÞ ¼ ðqutÞnþ1 þ OðDtÞ;
The purpose of this particular way of discretizing the quantity qut is to further decouple the mass conservation and the
momentum conservation equations. This will become clear once we do the stability analysis.

Remark 3.3. By analogy with projection methods for constant density flows [30,19], we can write a rotational version of the
above algorithm by replacing the pressure update (3.8) by
pnþ1 ¼ pn þ /nþ1 � lr � unþ1: ð3:9Þ
3.2. Stability analysis of the incremental scheme

We assume again that f = 0 to avoid irrelevant technicalities. Note that the equation used to determine the density is the
same as in the non-incremental case. Therefore, the L2-stability of the density is again a consequence of Proposition 2.1.

Theorem 3.1. Assume that (2.16) and (2.17) hold. Then, for any Dt > 0 the solution to (3.6)–(3.8) satisfies
krNuNk2 þ 2lDt
XN

k¼1

krukk2 þ ðDtÞ2

v krpNk2 þ ðDtÞ2

v
XN�1

k¼1

krðpk � pk�1Þk2
6 kr0u0k2 þ ðDtÞ2

v krp0k
2
;

where rn ¼ ffiffiffiffiffiffi
qn
p

.

Proof. We take the momentum equation (3.6), multiply it by 2Dtun+1 and integrate. Notice that the boundary conditions
imply
 Z

X
qnþ1un � runþ1 þ 1

2
r � ðqnþ1unÞunþ1


 �
� unþ1 ¼

Z
X

qnþ1un � r ju
nþ1j2

2
þr � ðqnþ1unÞ ju

nþ1j2

2

" #

¼
Z

X
r � qnþ1 junþ1j2

2
un

" #
¼ 0:
Next, we have
1
2 ðqnþ1 þ qnÞunþ1 � qnun

Dt
;2Dtunþ1

� �
¼ krnþ1unþ1k2 þ hqnðunþ1 � 2unÞ;unþ1i

¼ krnþ1unþ1k2 þ krnðunþ1 � unÞk2 � krnunk2
:

By combining the above observations, we arrive at the following equality
krnþ1unþ1k2 � krnunk2 þ krnðunþ1 � unÞk2 þ 2lDtkrunþ1k2 þ 2Dthrðpn þ /nÞ;unþ1i ¼ 0: ð3:10Þ
By (3.8), we infer
�2Dthrðpn þ /nÞ;unþ1i ¼ �2Dthrð2pn � pn�1Þ;unþ1i ¼ 2Dthrðpnþ1 � 2pn þ pn�1Þ;unþ1i � 2Dthrpnþ1;unþ1i: ð3:11Þ
Now, we rewrite (3.7) as follows:
Dðpnþ1 � pnÞ � v
Dt
r � unþ1 ¼ 0;
then we multiply this identity by 2(Dt)2(pn+1 � 2pn + pn�1)/v, and, after integrating by parts, we obtain
�2
ðDtÞ2

v hrðpnþ1 � pnÞ;rðpnþ1 � pnÞ � rðpn � pn�1Þi þ 2Dthunþ1;rðpnþ1 � 2pn � pn�1Þi ¼ 0:
Using again the identity 2a � (a � b) = a2 � b2 + (a � b)2 we obtain
ðDtÞ2

v ½�krðpnþ1 � pnÞk2 þ krðpn � pn�1Þk2 � krðpnþ1 � 2pn þ pn�1Þk2� þ 2Dthunþ1;rðpnþ1 � 2pn � pn�1Þi ¼ 0: ð3:12Þ
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Multiplying Eq. (3.7) by 2(Dt)2pn+1/v, we get
ðDtÞ2

v ½krpnþ1k2 � krpnk2 þ krðpnþ1 � pnÞk2� ¼ 2Dthunþ1;rpnþ1i; ð3:13Þ
where we integrated by parts and used the identity mentioned before.
Finally, taking (3.7) at time step n + 1 and subtracting (3.7) at time step n, and using the lower bound Hypothesis (2.17),

we derive the following estimate
ðDtÞ2

v krðpnþ1 � 2pn þ pn�1Þk2
6 vkunþ1 � unk2

6 krnðunþ1 � unÞk2
: ð3:14Þ
Adding (3.10)–(3.14), we obtain
krnþ1unþ1k2 � krnunk2 þ 2lDtkrunþ1k2 þ ðDtÞ2

v ½krpnþ1k2 � krpnk2 þ krðpn � pn�1Þk2� 6 0:
The desired result is obtained by adding up these relations for n = 0, . . . ,N � 1. h

Remark 3.4. Although numerical tests (see below) reveal that the rotational version of algorithm (3.6), (3.7) and (3.9) is sta-
ble and convergent, we have not yet been able to prove stability.
3.3. Space discretization

We now describe a conforming space discretization for the above time splitting algorithm. We assume that we have at
hand families of finite-dimensional vector spaces to approximate the velocity, the pressure, and the density fields,
respectively,
Xh � H1
0ðXÞ; Mh � H1

f¼0ðXÞ; Wh � H1ðXÞ: ð3:15Þ
The velocity space Xh and pressure space Mh are assumed to be compatible, in the sense that they satisfy the so-called LBB
condition [3,9,7].

It is well known that the Galerkin method is not well suited for solving hyperbolic equations (see for instance [7]). The list
of techniques aiming at addressing this problem is endless; in this list one can cite Galerkin-Least-Squares [20], Discontin-
uous-Galerkin [21,32], subgrid viscosity [12], method of characteristics [6] and many others. We will assume that the
numerical solution of (3.5) is obtained by one of these stabilization techniques and that the sequence fqn

hgn¼0;...;N �Wh; sat-
isfies the hypotheses (2.16) and (2.17).

We set q0
h ¼ q0h; u0

h ¼ u0h; p0
h ¼ p0h and /0

h ¼ 0 where q0h 2Wh, u0h 2 Xh and p0h 2Mh are suitable approximations of q0,
u0 and p0, respectively. Then, the fully discretized algorithm proceeds as follows: Given ðqn

h;u
n
h; p

n
h;/

n
hÞ 2Wh � Xh �Mh �Mh
compute qnþ1
h so that ð2:16Þ and ð2:17Þ hold: ð3:16Þ
Solve for unþ1
h 2 Xh so that
1
Dt
h1
2
ðqnþ1

h þ qn
hÞunþ1

h ;vhi þ lhrunþ1
h ;rvhi þ hqnþ1

h un
h � runþ1

h ;vhi þ
1
2
hr � ðqnþ1

h un
hÞunþ1

h ;vhi

¼ �hrðpn
h þ /n

hÞ;vhi þ hfnþ1
;vhi þ

1
Dt
hqn

hun
h;vhi; 8vh 2 xh: ð3:17Þ
Solve for /nþ1
h 2 Mh; so that
hr/nþ1
h ;rqhi ¼

v
Dt
hunþ1

h ;rqhi; 8qh 2 Mh: ð3:18Þ
Finally, update the new pressure pnþ1
h 2 Mh by setting
pnþ1
h ¼ pn

h þ /nþ1
h : ð3:19Þ
The above algorithm is stable in the following sense:

Corollary 3.1. Assume that the sequence fqn
hgn¼0;...;N �Wh; satisfies the hypotheses (2.16) and (2.17). Then, for any Dt > 0 the

solution to (3.17)–(3.19) satisfies
krN
h uN

h k
2 þ 2lDt

XN

k¼1

kruk
hk

2 þ ðDtÞ2

v krpN
h k

2 þ ðDtÞ2

v
XN�1

k¼1

krðpk
h � pk�1

h Þk
2
6 kr0hu0hk2 þ ðDtÞ2

v krp0hk
2
; ð3:20Þ
where rn
h ¼

ffiffiffiffiffiffi
qn

h

p
:
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Proof. The proof is essentially the same as that of Theorem 3.1. To realize this, it is sufficient to notice that all the test func-
tions that we use are admissible in the corresponding discrete spaces. h

Remark 3.5. The above algorithm is an improvement over the second-order algorithm described in Pyo and Shen [24, Algo-
rithm 2], which requires a very strong (somewhat unrealistic) compatibility condition between the density and velocity
spaces.

Remark 3.6. As usual for fractional time stepping techniques for the Stokes and Navier–Stokes equations, the stability prop-
erty from Corollary 3.1 does not explicitly require the pair of spaces (Xh,Mh) to satisfy the LBB condition. This impression is
misleading, since (3.20) does not really give a realistic stability on the pressure (unless Dt P c h). When going through the
details one eventually realizes that the LBB condition must be invoked to prove stability on the pressure in L2(X), we refer
the reader to, e.g. [10,11,13] for more details on this issue.
4. BDF second-order rotational projection method

The method presented in the previous section has a second-order splitting error (see [11, Theorem 5.1] for the constant
density version of this argument). But, to obtain a scheme of formal second-order accuracy in time it is necessary to replace
the two-level semi-implicit time discretization used in the mass conservation and momentum equations with a second-or-
der accurate time stepping method. The purpose of this section is to rewrite the rotational version of the incremental pres-
sure-correction algorithm described above by using the three-level BDF2 method.S

We proceed as before. The starting point is the BDF2 version of the rotational pressure-correction algorithm for constant
density flows, see e.g. [19]. The main idea consists of eliminating the so-called projected velocity and rewriting the projection
step in the form of a Poisson equation where the constant density is replaced by v; we refer to formulae 3.17, 3.18 and 3.19
from [13] with pI;kþ1 ¼ pk; b2 ¼ 3

2 ; b1 ¼ � 1
2, and b0 = 2. The above program is realized as follows: first initialize (q0,u0,p0,/0)

and (q1,u1,p1,/1). For instance (q1,u1,p1,/1) can be computed by using one step of the first-order algorithm described in the
previous Section. Then for n P 1, introduce the linearly extrapolated velocity field at the new time level n + 1 by defining
uI ¼ 2un � un�1:
The new density qn+1 is evaluated by solving the following discretized version of the mass conservation equation:
3qnþ1 � 4qn þ qn�1

2Dt
þ uI � rqnþ1 ¼ 0: ð4:1Þ
Similarly, the momentum equation is discretized in time as follows:
qnþ1 3unþ1 � 4un þ un�1

2Dt
þ qnþ1 uI � r

� �
unþ1 � lDunþ1 þr pn þ 4

3
/n � /n�1

3

 !
¼ fnþ1

; unþ1jC ¼ 0: ð4:2Þ
A pressure correction is evaluated by solving
D/nþ1 ¼ 3v
2Dt
r � unþ1; @n/

nþ1jC ¼ 0: ð4:3Þ
Finally, the pressure is updated by means of
pnþ1 ¼ pn þ /nþ1 � lr � unþ1: ð4:4Þ
The key difference between the above algorithm and 3.17, 3.18 and 3.19 from [13] is that the density is now variable and
there is the v coefficient in (4.3).

Note that we did not add any particular extra stabilization terms in (4.1) and (4.2), the main reason being that the stability
analysis of the method still eludes us at the moment; nevertheless, numerical experiments (see Section 5) show that this
method is indeed stable and accurate.

5. Numerical experiments

5.1. Convergence tests

In order to test the algorithm (4.1)–(4.3) and (4.4), we consider a problem with a known analytical solution. We solve the
variable density Navier–Stokes equations in the unit disk
X ¼ fðx; yÞ 2 R2 : x2 þ y2 < 1g;
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having the exact solution
Table 1
Error in

Dt

0.10000
0.05000
0.02500
0.01250
0.00625
0.00312
qðx; y; tÞ ¼ 2þ x cosðsinðtÞÞ þ y sinðsinðtÞÞ;

uðx; y; tÞ ¼
�y cosðtÞ
x cosðtÞ

� �
;

pðx; y; tÞ ¼ sinðxÞ sinðyÞ sinðtÞ;
so that the right-hand side to the momentum equation is
f ¼ qðx; y; tÞðy sinðtÞ � x cos2ðtÞÞ þ cosðxÞ sinðyÞ sinðtÞ
�qðx; y; tÞðx sinðtÞ þ y cos2ðtÞÞ þ sinðxÞ cosðyÞ sinðtÞ

 !
:

Using the second-order scheme of Section 4 and a ðP2;P2;P1Þ discretization for the density–velocity–pressure, we solve
the above mentioned problem for T = 10. The mesh size is chosen small enough so that the error from the discretization in
space is negligible compared to the time stepping error. The time steps tested are in the range 3.125 � 10�3

6Dt 6 10�1 The
results are shown in Table 1. We have measured the maximum in time of the error of all variables in the indicated spaces. As
we see, the time discretization error is second-order for all the quantities. There is a slight degradation of the convergence
rate on the density due to the fact that we use the Galerkin method with no extra stabilization. In the tests reported in the
next section the Galerkin method is stabilized using a shock-capturing technique based on the residual equation for the
square of the density.

Remark 5.1. Note that for constant density flows it has been proved [19] (see also [13]) that the error in time in the L2-norm
for the pressure and in the H1-norm for the velocity is not fully second-order but rather of order 3

2 in domains with piecewise
smooth boundary. In the results that we obtained all the quantities have second-order accuracy in time and we conjecture
that this is due to the regularity of the domain (X is a disk). In general domains (i.e., with piecewise smooth boundary) we
expect second-order for the velocity in the L2-norm and 3

2-order for the pressure the L2-norm and the velocity in the H1-norm.
5.2. A low Atwood number problem

We now illustrate the performance of the method on a realistic problem. We compute the development of a Rayleigh–
Taylor instability in the viscous regime as documented by Tryggvason in [31]. This problem consists of two layers of fluid
initially at rest in the rectangular domain X = (�d/2,d/2) � (�2d,2d). The transition between the two fluids is regularized
as follows:
qðx; y; t ¼ 0Þ
qmin

0

¼ 2þ tanh
y� gðxÞ

0:01d

� �
; ð5:1Þ
where the initial position of the perturbed interface is g(x) = � 0.1dcos(2px/d). The heavy fluid is above and the density ratio
is 3, so that the Atwood number
At ¼ ðqmax
0 � qmin

0 Þ=ðqmax
0 þ qmin

0 Þ; ð5:2Þ
equals 0.5, according to Tryggvason’s definition, where we set qmax
0 :¼maxx2Xq0ðxÞ. For t > 0 the system evolves under the

action of a vertical downward gravity field of intensity g; the source term in the momentum equation is downward and
equal to qg.

The equations are non-dimensionalized using the following references: qmin
0 for the density, d for lengths, and d1/2/g1/2 for

time, where g is the gravity field. Then, the reference velocity is d1/2g1/2, and the Reynolds number is defined by
Re ¼ qmin

0 d3=2g1=2=l. The computational domain can be restricted to (0,d/2) � (�2d,2d) since we assume that the symmetry
of the initial condition is maintained during the time evolution. The no-slip condition is enforced at the bottom and top walls
and symmetry is imposed on the two vertical sides.

The mass conservation equation is stabilized by adding a nonlinear viscosity proportional to the residual of the conser-
vation equation for q2 in the spirit of the entropy viscosity of [14]. This technique is very efficient and details will be reported
elsewhere [15].
time for second-order scheme.

Velocity L2 Rate Velocity H1 Rate Pressure L2 Rate Density L2 Rate

0 3.90E�3 – 1.63E�2 – 1.25E�2 – 1.25E�2 –
0 1.18E�3 1.73 5.03E�3 1.70 3.61E�3 1.79 2.93E�3 2.09
0 3.35E�4 1.82 1.47E�3 1.77 1.00E�3 1.85 7.60E�4 1.95
0 9.04E�5 1.89 4.13E�4 1.83 2.70E�4 1.89 2.08E�4 1.87
0 2.37E�5 1.93 1.15E�4 1.84 7.10E�5 1.93 5.85E�5 1.83
5 6.12E�6 1.95 3.17E�5 1.86 1.87E�5 1.93 1.67E�5 1.81
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The time evolution of the density field at Re = 1000 is shown in Fig. 1 at times 1, 1.5, 1.75, 2, 2.25, and 2.5 in the time scale
of Tryggvason, which is related to ours by tTryg ¼ t

ffiffiffiffiffi
At
p

. The mesh is composed of 232,552 triangles and there are 466,573 P2

nodes. The mesh size is of order 0.025 in the refined regions. The time step is Dt ¼ 0:00125
ffiffiffiffiffi
At
p

.

Fig. 1. Re = 1000; density ratio 3. The interface is shown at times 1, 1.5, 1.75, 2, 2.25, and 2.5.

Fig. 2. Re = 5000; density ratio 3. The interface is shown at times 1, 1.5, 1.75, 2, 2.25, and 2.5.



Fig. 3. Re = 1000; density ratio 7. The interface is shown at times 1, 1.5, 2, 2.5, 3, 3.5, and 3.75.
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To further assess the sensitivity of the method to spatial resolution and to verify that the numerical viscosity is signifi-
cantly smaller than the physical viscosity we solve the same problem using the same mesh for Re = 5000. The results are
shown in Fig. 2.

The above results are in good agreement with those from [8]. Since the algorithm (4.1)–(4.4), only requires solving a Pois-
son equation, computing the above test cases was significantly faster (one order of magnitude) than when doing the com-
putations reported in [8]. This time saving allowed us to use finer space resolution.

5.3. High Atwood number

We finish by performing a test case reported in [2]. The geometry is the same as in Section 5.2. The density ratio is 7 so
that At = 0.75, using Tryggvason’s definition (5.2) (using the definition from [2] the Atwood number is 0.875). The initial den-
sity field is regularized as follows:
qðx; y; t ¼ 0Þ
qmin

0

¼ 4þ 3 tanh
y� gðxÞ

0:01d

� �
; ð5:3Þ
where the perturbation of the interface is given by g(x) = �0.01d cos(2px/d). The Reynolds number is Re = 1000.
The results using the same mesh and same time step as in Section 5.2 are reported in Fig. 3 for times 1, 1.5, 2, 2.5, 3, 3.5,

and 3.75 (using d1/2/g1/2 as time scale). Although the locations of the falling and rising bubbles are similar to those reported
in [2], the details of the flow differ from those in [2]. This unexplained discrepancy was already noted in [18].

Acknowledgments

The authors are supported by the National Science Foundation Grants DMS-0510650 and DMS-0713829.

References

[1] Ann S. Almgren, John B. Bell, Phillip Colella, Louis H. Howell, Michael L. Welcome, A conservative adaptive projection method for the variable density
incompressible Navier–Stokes equations, J. Comput. Phys. 142 (1) (1998) 1–46.

[2] John B. Bell, Daniel L. Marcus, A second-order projection method for variable-density flows, J. Comput. Phys. 101 (1992) 334–348.
[3] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, NY, 1991.
[4] D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 168 (2) (2001) 464–

499.
[5] A.J. Chorin, Numerical solution of the Navier–Stokes equations, Math. Comput. 22 (1968) 745–762.
[6] J. Douglas Jr., T.F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with

finite element or finite difference procedures, SIAM J. Numer. Anal. 19 (1982) 871–885.



2846 J.-L. Guermond, A. Salgado / Journal of Computational Physics 228 (2009) 2834–2846
[7] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159, Springer-Verlag, New York, 2004.
[8] Y. Fraigneau, J.-L. Guermond, L. Quartapelle, Approximation of variable density incompressible flows by means of finite elements and finite volumes,

Commun. Numer. Methods Eng. 17 (2001) 893–902.
[9] V. Girault, P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations Theory and Algorithms Springer Series in Computational Mathematics,

Springer-Verlag, Berlin, Germany, 1986.
[10] J.-L. Guermond, Some practical implementations of projection methods for Navier–Stokes equations, M2AN Math. Model. Numer. Anal. 30 (5) (1996)

637–667.
[11] J.-L. Guermond, Un résultat de convergence d’ordre deux en temps pour l’approximation des équations de Navier–Stokes par une technique de

projection incrémentale, M2AN Math. Model. Numer. Anal. 33 (1) (1999) 169–189. Also in C.R. Acad. Sci. Paris, Série I, 325:1329–1332, 1997.
[12] J.-L. Guermond, A. Marra, L. Quartapelle, Subgrid stabilized projection method for 2d unsteady flows at high Reynolds number, Comput. Methods Appl.

Mech. Eng. 195 (2006).
[13] J.L. Guermond, P. Minev, Jie Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195 (44–47) (2006)

6011–6045.
[14] J.-L. Guermond, R. Pasquetti, Entropy-based nonlinear viscosity for fourier approximations of conservation laws, C.R. Math. Acad. Sci. Paris, 346 (2008)

913–918.
[15] J.-L. Guermond, R. Pasquetti, B. Popov, Entropy-based viscosities, in preparation.
[16] J.-L. Guermond, L. Quartapelle, Calculation of incompressible viscous flows by an unconditionally stable projection FEM, J. Comput. Phys. 132 (1)

(1997) 12–33.
[17] J.-L. Guermond, L. Quartapelle, On the approximation of the unsteady Navier–Stokes equations by finite element projection methods, Numer. Math. 80

(5) (1998) 207–238.
[18] J.-L. Guermond, L. Quartapelle, A projection FEM for variable density incompressible flows, J. Comput. Phys. 165 (1) (2000) 167–188.
[19] J.-L. Guermond, J. Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comput. 73 (248) (2004) 1719–1737.

electronic.
[20] T.J.R. Hughes, L.P. Franca, G.M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-Squares method

for advection-diffusive equations, Comput. Methods Appl. Mech. Eng. 73 (1989) 173–189.
[21] C. Johnson, U. Nävert, J. Pitkäranta, Finite element methods for linear hyperbolic equations, Comput. Methods Appl. Mech. Eng. 45 (1984) 285–312.
[22] P.-L. Lions, Mathematical topics in fluid mechanics, vol. 1. Incompressible models, Oxford Lecture Series in Mathematics and its Applications, vol. 3.

The Clarendon Press, Oxford University Press, New York, 1996.
[23] Chun Liu, Noel J. Walkington, Convergence of numerical approximations of the incompressible Navier–Stokes equations with variable density and

viscosity, SIAM J. Numer. Anal. 45 (3) (2007) 1287–1304. electronic.
[24] Jae-Hong Pyo, Jie Shen, Gauge-Uzawa methods for incompressible flows with variable density, J. Comput. Phys. 221 (1) (2007) 181–197.
[25] R. Rannacher, On Chorin’s projection method for the incompressible Navier–Stokes equations, in: The Navier–Stokes Equations II—Theory and

Numerical Methods (Oberwolfach, 1991), Lecture Notes in Math., vol. 1530, Springer, Berlin, Germany, 1992, pp. 167–183.
[26] J. Shen, On error estimates of projection methods for the Navier–Stokes equations: first-order schemes, SIAM J. Numer. Anal. 29 (1992) 57–77.
[27] J. Shen, Efficient Chebyshev–Legendre Galerkin methods for elliptic problems, in: A.V. Ilin, R.L. Scott (Eds.), Proceedings of ICOSAHOM’95, Houston J.

Math., 1996, pp. 233–240.
[28] R. Temam, Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II, Arch. Rat. Mech. Anal. 33 (1969)

377–385.
[29] Roger Temam, Une méthode d’approximation de la solution des équations de Navier–Stokes, Bull. Soc. Math. France 96 (1968) 115–152.
[30] L.J.P. Timmermans, P.D. Minev, F.N. van de Vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer.

Methods Fluids 22 (1996) 673–688.
[31] G. Tryggvason, Numerical simulation of Rayleigh–Taylor instability, J. Comput. Phys. 75 (1988) 253–282.
[32] N.J. Walkington, Convergence of the discontinuous Galerkin method for discontinuous solutions, SIAM J. Numer. Anal. 42 (5) (2004) 1801–1817.


	A splitting method for incompressible flows with variable density  based on a pressure Poisson equation
	Introduction
	Non-incremental projection method
	The heuristic argument
	The non-incremental scheme
	Stability analysis of the non-incremental scheme

	Incremental projection method
	The heuristic argument
	Stability analysis of the incremental scheme
	Space discretization

	BDF second-order rotational projection method
	Numerical experiments
	Convergence tests
	A low Atwood number problem
	High Atwood number

	Acknowledgments
	References


